

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Reversible Photoisomerization of β -Methyl- β -Nitrostyrene: The Role of Triethylamine

E. A. Lissi^a; E. Norambuena^b; C. Giannotti^c

^a Facultad de Química y Biología, Universidad de Santiago de Chile, Correo 33, Santiago, Chile

^b Departamento de Química, Universidad Metropolitana de Ciencias de la Educación, Casilla 14,

Santiago, Chile ^c Institut de Chimie des Substances Naturelles, CNRS, Gifsur Yvette, France

To cite this Article Lissi, E. A. , Norambuena, E. and Giannotti, C.(2000) 'Reversible Photoisomerization of β -Methyl- β -Nitrostyrene: The Role of Triethylamine', *Spectroscopy Letters*, 33: 3, 385 — 391

To link to this Article: DOI: 10.1080/00387010009350084

URL: <http://dx.doi.org/10.1080/00387010009350084>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

**REVERSIBLE PHOTOISOMERIZATION OF β -METHYL- β -NITROSTYRENE:
THE ROLE OF TRIETHYLAMINE.**

KEY WORDS: EPR , Photoisomerization, radical, nitrostyrene

E. A. Lissi ^{1*}, E. Norambuena ², C. Giannotti ³

- 1 Facultad de Química y Biología. Universidad de Santiago de Chile. Casilla 40, Correo 33, Santiago, Chile.
- 2 Departamento de Química. Universidad Metropolitana de Ciencias de la Educación. Casilla 14. Santiago. Chile.
- 3 Institut de Chimie des Substances Naturelles, CNRS, Avenue de la Terrasse 91198. Gif-sur Yvette. France

ABSTRACT

The photolysis of *trans*- β -nitro- β methylstyrene in acetonitrile solution gives the *cis*-isomer with a quantum yield of 0.8. Addition of triethylamine to the system leads to a small decrease in the photoisomerization quantum yield and the appearance of a strong EPR signal. This signal remains for several hours at the end of the irradiation. It is demonstrated that the EPR signal is associated to an intermediary produced during the triethylamine catalyzed thermal back formation of the *trans* isomer. This intermediary bears an unpaired electron mostly associated to the nitro group and suggest that the thermal back reaction takes place by an initial electron transfer from the amine to the nitro group, leading to a long lived zwitterionic biradical.

INTRODUCTION

β -nitro-methylstyrenes are a family of compounds with particular properties due to the conjugation between the nitro group and the aromatic moiety mediated by the presence of the vinyl double bond. These compounds possess interesting chemical and biological properties. In particular, it has been reported that they stimulate the nervous central system, inhibit bacterial growth, and present cytotoxic and antitumoral effects in rats (1,2). Their one electron electrochemical reduction in aprotic solvents leads to the formation of the corresponding radical anions that are stable in the absence of oxygen (3). The electron paramagnetic spectra of these ions indicate that, although the unpaired electron is mainly attached to the intro group, it is delocalized over all the aliphatic and aromatic Π system.

Trans- β -nitro- β -methylstyrenes presents a strong absorbing band in the near UV (ca 300 nm). Excitation in this band leads to very low fluorescence (4) indicative of a very short singlet lifetime. This could indicate the presence of favored intersystem crossing and / or internal conversion processes, or the occurrence of an efficient chemical deactivation pathway. A possible efficient deactivation pathway could be the *trans*-*cis* isomerization (5,6). The *cis*-isomer thermally reverts to the *trans*-isomer in a process that is catalyzed by trialkylamines (6). The mechanism of this process, as well as the role of the amines in the photoisomerization process, has not been evaluated.

EXPERIMENTAL

Materials: *Trans*- β -methyl- β -nitrostyrene was prepared according to previous procedures. Triethylamine was used after distillation under reduced pressure. The other reagents were used after routine purification. The concentration of the reactants usually was 1×10^{-3} M. The solutions (i.e., acetonitrile) were flushed with nitrogen before the irradiation.

Measurements: The solutions for EPR investigations were placed in a test tube in the dark or diffuse light and degassed by bubbling with argon for 20 minutes. The solutions were then transferred to a 0.1 mm quartz EPR flat cell and again deoxygenated by a slow stream of argon. The cell was introduced into a 4101 STE/8219 cavity of an ER 100D

spectrometer equipped with BST 100/700 BHN12 accessory for variable temperature control. The samples were irradiated in the cavity with a Hanovia 977B0090-1000-W mercury-xenon lamp in a model LH 51H Schoeffel lamp housing. The light was focused through quartz lenses and filtered by appropriate Corning or Oriel glass filters. The spectra were calibrated by DPPH (α,α' -diphenyl- β -picrylhydrazyl). EPR spectra were simulated using a Rochester University program.

UV spectra for determining isomerization rates were recorded on a Shimadzu UV-160 spectrophotometer. Quantum yields were determined by irradiating samples in Pyrex test tubes in a merry-go-round apparatus. The incident light intensities were measured by using the Reinecke'salt actinometer. All irradiation was conducted in a Rayonet photoreactor equipped with 300 nm lamps.

RESULTS

Irradiation of *trans*-β-nitro-β-methylstyrene (BNMS) with a light of 300 nm reduces the absorbance at 304 nm due to the *trans*-compound, and increases the absorbance at 282 nm. This can be attributed to the formation of the *cis*-isomer. Since the absorption of the *cis*-isomer at 304 nm is negligible, the decrease in absorbance at this wavelength can be directly related to the disappearance of the *trans* compound. The *trans*-isomer quantum yield consumption was evaluated as 0.8, indicating that the chemical pathway is the main decay process of the excited molecules. In the presence of triethylamine (up to 0.1 M) the photoconsumption quantum yield of the BNMS reduces to ca. 0.65.

As previously postulated (6), one of the main products of BNMS photolysis is the *cis*-isomer. This is confirmed by the increase in the absorbance at 304 nm associated to the dark incubation of the photolyzed samples at 40 °C, particularly in the presence of TEA.

Photolysis of BNMS in the EPR cavity does not produce any significant free radical signal. On the other hand, when the photolysis is carried out in the presence of TEA (0.1

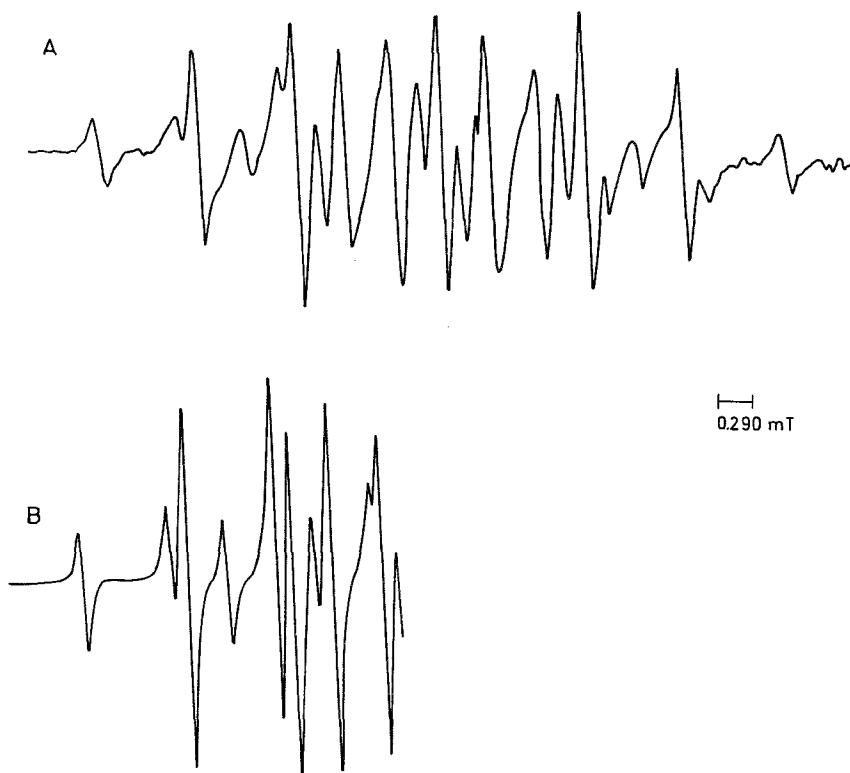
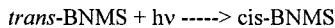


FIG. 1 (A) EPR Experimental Spectrum of the *trans*-β-methyl-β-nitrostyrene (BNMS); (B) Computer Simulation of the Same Spectrum

M) a persistent EPR signal is observed (Fig. 1) that remains a long time in the dark, after shutting-off the light. The EPR spectrum consists of a hyperfine splitting with the following constants:


$$a_N = 1.7 \text{ mT}, a_{3H} = 1.3 \text{ mT}, a_H = 1.0 \text{ mT}$$

The back formation of the *trans*-compound from the photochemical produced *cis*-isomer is catalyzed by TEA. This process produces a strong EPR signal identical to that observed

when the photolysis is carried out in the presence of amine. This signal disappears in the presence of oxygen.

DISCUSSION

The large isomerization quantum yields observed in the photolysis of BNMS indicates that even in the presence of amines, the main process can be considered to be a simple *trans*-*cis* isomerization, such as:

The photochemistry can be considered to take place in a simple elementary step, without formation of stable intermediates of free radical character. This process takes place independently of the presence of amines. In fact, the small reduction in quantum yield observed in the presence of amines can be ascribed to some catalyzed back reaction.

It has been postulated (6) that the thermal back isomerization of the *cis* compound, catalyzed by TEA, takes place through a zwitterionic biradical, as depicted in the scheme

The results obtained in the present work demonstrate that a free radical species is involved as an intermediate in the process. However, the characteristics of the species detected (see Fig 1) seems to be incompatible with those expected for the nitrostyrene radical anion, because the hyperfine constants are bigger than the nitroaromatic ones. Furthermore, there is no evidence of the TEA derived radical cation.

A plausible explanation is that the initial electron transfer between the amine and the nitrostyrene derivative is followed by a proton transfer to give as an intermediate a radical such as:

We attempt to produce this radical through the interaction of NO_2 and β -methyl styrene. Addition of NO_2 to β -methylstyrene produces a radical. He is particularly stable

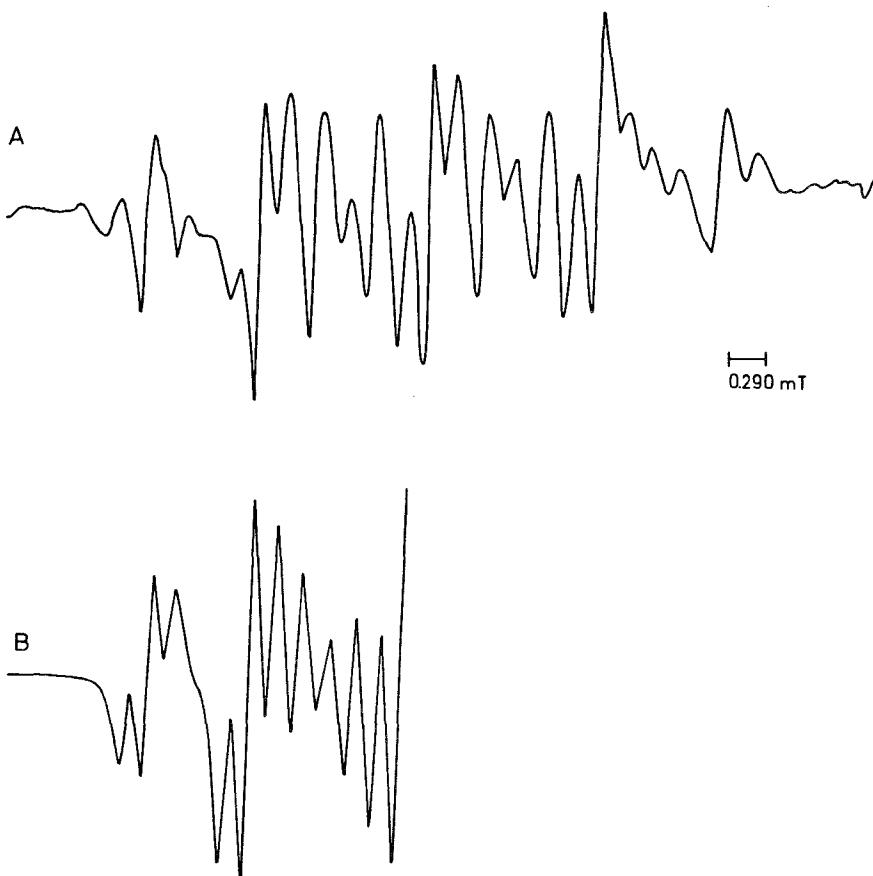


FIG. 2 (A) EPR Experimental Spectrum of the radical produced by the addition of NO_2 to the β -methylstyrene; (B) Computer Simulation of the Same Spectrum

in the presence of TEA. In fact, it could only be detected when the amine concentration is higher than 0.01M. The EPR spectrum of the radical obtained in the presence of TEA consists of 21 lines with the following constants: $a_N = 1.489$ mT, $a_{2H} = 1.01$ mT and $a_{2H} = 0.213$ mT (Fig 2). However, although this spectrum bears some similarity to that shown in Fig 1, both corresponds to different species.

In conclusion, we have shown that the photochemical isomerization *trans*- *cis* is not catalyzed by amines, the free radical species are intermediates in the TEA catalyzed back isomerization of *cis*-β-methyl-β-nitrostyrene. The free electrons are basically localized in the nitro styrene moiety, with TEA acting as a catalyser and / or stabilizer of the transient species. However, at present it is not possible to assign a structure to those intermediates.

ACKNOWLEDGEMENT

This work was part of an ECOS-CONICYT collaboration project

REFERENCES

1. J. C. Doré , C.Viel New Synthetic Cytotic and Antitumor Agents from Aristolochic acid. *Chim. Thérap.* 27, 257-312 (1972)
2. P. Wardman. Some Reactions and Properties of Nitro Radical-Anions Important in Biology and Medicine. *Environmental Health Perspectives* 64, 309 –320 (1985)
3. E. Norambuena. Free Radical of p-nitro-β-methyl-β-nitrostyrenes. *Actualidades de Físico-Química Orgánica* 460- 470, (1995).
4. D. J. Cowley The Photoluminescence of Some β-nitrostyrenes. Excited State Energies in Unsaturated Nitro-compounds. *J.C.S.Perkin II* 1576-1580, (1975)
5. A.L. Bluhm, J. Weinstein. Photocromic 1-aryl-2-nitroalkenes. *J. Am. Chem. Soc.* 87, 5511- 5112 (1965)
6. D.B. Miller, P.Flanagan, H. Schechter . Stereochemistry of Thermal Isomerization of 1,3-Dinitro-2,4-diphenylbutadienes. Cis, Trans Isomerism of β-nitrostyrenes. 41 (12), 2112-2120 (1976)

Date Received: August 23, 1999

Date Accepted: December 1, 1999